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Confidence Bands Under Proportional Hazards!

by

Myles Hollander and Edsel Pena
The Florida State University

Asymptotic simultaneous confidence bands are derived for the survival
function under the proportional hazards model of random right-censorship.

- »
These bands are based on the maximum likelihood estimator@fMtE}—of the survival

function, rather than the well-known product limit estimator){PLE): In the

'.ivfi_
case where the censoring parameter, denoted by P, is known the bands are
heta
asymptotically exact, while when B is unknown the bands are asymptotically
bats

conservative., For the case where ﬁ is unknown, the proposed bands are shown

-

to be narrower than those proposed by Cheng and Chang (1985). Csdrgd and
Horvath's (1986) idea of mixing bands is then employed to obtain even narrower
bands. As one would expect, under the more structured model, the PLE-based
band of Gillespie and Fisher (1979) is shown to be inferior to the MLE-based

bands, and this inferiority is more marked as the degree of censoring increases.

American Mathematical Society 1980 subject classification. Primary 62Gl1S5;
Secondary 62NOS.

Key Words and Phrases: Koziol-Green model, simultaneous confidence bands,
weak convergence.
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1, Introduction and summary. Let (xi’Yi)’ i=1l,...,n, be independent and iden-
tically distributed random vectors. In the proportional hazards model of random
right-censorship, referred to in the sequel as the Koziol-Green (KG) model, xi
and Y, are independent, the Xi's denote the survival times with continuous
survival function F(t)=P(X>t), and the Yi's denote the censoring times with
continuous censoring function G(t)=P(Y>t). Furthermore, this model asserts that
for some 820, possibly unknown, G(t)=F(t)B for all t20. The censored data consist
of (Zi,si), i=1,...,n, where Zi=minimum(xfxi), 6i=I(Xi<Yi) and I(A) is the indi-
cator of event A,

We develop asymptotic (1-a)100% simultaneous confidence bands for F under
the KG model. The bands are based on the maximum likelihood estimator (MLE) of
F for this model. These bands, which are derived in Section 2, are presented in
pairs with the bands in each pair being asymptotically equivalent. The bands in
each pair are of the forms
(1.1) {[Fn(t){I + rn(t;-)}'l, F (£)(1 - rn(t;-)}'l], D<tsT}
and
(1.2) {[Fn(t){l - rn(t;-)}, Fn(t){l + rn(t;-)}], 0<ts<T},
where Fn(t) is the MLE of F given in (2.1), and rn(t;-) depends on at least one
tabular value, with the tabular values depending on B, @, and H(T), where H=FG.
In the case where 8 is known the bands are asymptotically exact, while when B is
unknown the bands are asymptotically conservative, though less conservative than
bands proposed by Cheng and Chang (1985) under the same model. Cs&rgd and

‘_*
Horvath's (1986) idea of mixing bands is then employed to obtain narrower mixed ?
bands. In Section 3 we assess the adequacy of the asymptotic results for finite 0

a

sample sizes. For different values of n, B8, and a, estimates of the achieved

T —
confidence levels for each of the bands are obtained through a computer simulation.
In Section 4 the asymptotic widths of the bands are compared analytically., It is
Tty
'S

shown that when 8 is unknown, some of the bands presented here are narrower than D




those of Cheng and Chang (1985). Furthermore, when 8 is large and the KG model
holds, the MLE-based mixed bands outperform the Gillespie and Fisher (1979)
band based on the Kaplan and Meier (1958) product-limit estimator (PLE) of F,

The KG model has received considerable attention in the literature. This
model was introduced by Koziol and Green (1976) in the context of developing a
PLE-based goodness-of-fit test for censored data. Earlier, Efron (1967) used a
special case of this model to compare the efficiencies of various two-sample
tests for censored data., Under this model, Csdrgd8 and Horvath (1981) presented
a PLE-based confidence band and a goodness-of-fit test for F. Their goodness-of-
fit test improved upon that of Koziol and Green (1976)in that their test does
not require that B be known., Also, under the assumption that the KG model holds,
Chen, Hollander and Langberg (1982) and Wellner (1985) obtained the exact moments
of versions of the PLE, and studied the applicability of using the asymptotic
variance of the PLE in place of its exact variance for finite samples. Emoto
(1984) also utilized a special case of *he KG model in comparing the mean-square
errors of the PLE and the MLE of the survival function.

The importance of the KG model in reliability theory and survival analysis
should not be underestimated. The model arises naturally in reliability studies,
and in particular, in competing risks models (cf. Example 1 of Chen, Hollander
and Langberg, 1982). More importantly, its great tractability enables the study
of the performances and properties of other methods developed for more general
models (such as the random right-censorship model where no structural relation-
ship between F and G is assumed) in settings where these methods are not optimal.
In this spirit, Chen, Hollander and Langberg (1982) and Wellner (1985) were able
to study how well the asymptotic variance of the PLE approximates the exact
variance when the KG model holds. In a similar vein, we are able to study the

Gillespie and Fisher (1979) PLE-based band under the KG model where it has the

e |

I | Lt
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correct asymptotic coverage probability but it is not the preferred band. In many
ways, the KG model assumes a position in reliability models similar to the

role that its precursor, the Lehmann alternatives, has in classical nonparametric
W settings such as the one- and two-sample problems. Lehmann's (1953) alternatives
also arise naturally in certain situations, and therefore the tests derived for
these alternatives are of importance in their own right. However such tests

S? serve also as standards for assessing how much power other competing tests (such
géz as the Wilcoxon or normal scores tests) sacrifice in models for which they are

not optimal., The KG model and procedures derived under it fulfill a similar

%; role in the domain of reliability models.,

&

W 2. Confidence bands for the survival function. The maximum likelihood estimator
ﬁg of F under the KG model is given by

P H ()Y if 8 is known

,6:: (2.1) F, (1) =Hn(t)Y(n) if 8 is unknown,

}&, where y=(1+8)'1, yn=y(n)=n'12'.1‘=16i and Hn(t:)=n'1 2=11(Zi>t). The parameter y
~:cA.

2& equals the probability of an uncensored observation, so B is referred to in the
3¢‘ sequel as the censoring parameter. For ease of reference, the different pairs
&3 of bands presented below are labelled by A, Bn’ vees Hn’ with the bands in each
:§: pair differentiated by a superscript of 1 or 2, e.g., A%, Ai, etc., according

3&. to whether it is of the form (1.1) or (1.2), respectively. In (1.1) and (1.2)

éé? it will be implicit that Fn(t)=Hn(t)Y or Hn(t)Y(n) according to whether 8 is

éﬁf known or unknown, respectively, Furthermore, to facilitate the proofs of some
‘?? results, we assume the existence of a basic probability space (2,F,P) such

jg; that the random functions discussed below are measurable maps from (Q,F) to

:ﬁg (D,D), where the latter is Skorohod's measurable space on [0,T] (cf. Billingsley,
f 1968, Chapter 3).

;gg We first present the bands for the case where B is known. With minor

55: modifications of Theorem 3 of Cheng and Lin (1984), the following weak convergence
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result for Fn(t)=Hn(t)Y is obtained.

1/2

Theorem 2,1: If 0<T<» with F(T)>0, then Wn(t)=n [Fn(t)-F(t)] => W(t) on D[0,T],

where W(t) is a Gaussian process having zero mean and covariance function
Cov(N(s) ,N(t))=u(s)v(t) for 0ssstsT, u(s)=yG(s) L[1-H(s)], v(t)=y6(t) lH(t),

and '"=='" denotes ''converges weakly'.

Let d"1(s)=inf{t: d(t)2s} be the inverse of d(t)=u(t)/v(t)=[1-H(t)]/H(t).
Since F and G are continuous then d'l(s) is strictly increasing. By Theorem 2.1

and the transformation of Doob (1949) the following corollary is immediate.

Corollary 2.1: If 0<T<» with F(T)>0, then Wn(t)/[yF(t)] => B(d(t)) on D{0,T],

where B(t) is the standard Brownian motion process.

Corollary 2.2: If O<T<» with F(T)>0, then Wn(t)/[yFn(t)] = B(d(t)) on D[0,T].

Notation: In the remainder of the paper, sup, will mean SUP v T and limn will

mean limn+“, except when otherwise stated.

Proof of Corollary 2.2: By Theorem 4.1 of Billingsley (1968, p. 25) it suffices

to show that SUPtI{Wn(t)/Fn(t)} - {Wn(t)/F(t)}l -+ 0 almost surely (a.s.). By
the continuous mapping theorem (Billingsley, 1968, Theorem 5.1), suptlwn(t)l -+
suptIW(t)I in distribution. Since P{supt|W(t)|<w}=1, it therefore remains to
show that sup [{1/F (t)} - {1/F(t)}| + 0 a.s.

Let €=F(T)>0 and take woeno={weﬂz supt|Hn(t)-H(t)[ + 0}. Then there exists
an integer N=N(w0,e) such that H“(t:)Z(e/Z)I/Y for all n2N, Thus for this wg and
n2N, sup, | (1/F (£)} - {1/F(8)}|s2e"sup |F, (1) - F(t) [=2e 2sup [ (6)Y - H(®)Y| 0.

Since w, is arbitrary and P(Qo)=1 by the uniform strong consistency of Hn(t),

0
the proof is complete. ||
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v Let QT(AI,AZ) denote the probability that the process B(t) lies between

EEE the lines -(Al + Azt) and (Al + Azt) for all 0<tsT. From Anderson (1960}, we

| find that for A1>0,

égé_ QT(AI,A2)=P{|B(t)|sx1 + Ayt, 0stsT}

:‘% (2.2)  =1-20[(-A,T-2)/T?]-2 [5_ exp(-2a,2,k%)

::.:;: {Q[(12T+2)‘1k+kl)/'l‘1/2] - Q[(-X2T+2A1k-kl)/T1/2]},

~:,§': where ¢(+) is the cumulative distribution function of a standard normal variable.
R Also, denote the empirical version of d(t) by d_(t)=[1-H_ (t)]/H (t). Then the
':':';.: following theorem provides the An(t;l?,lg) bands.

K Theorem 2.2: Let O<a<l and O<T<» with F(T)>0. Then the bands in (1.1) and
-1/2

(1.2) with rn(t;A?,Ag)m Y[A?+ Agdn(t)] are asymptotic (1-a)100% simultaneous

s
*‘: confidence bands for F on [0,T] whenever Qd(T) (A?,x;)ﬂ-a.

Proof: By the choice of A:‘ and )\g, and Corollary 2.1,

‘:EEE' 1-a=P{|B(t) | A% + Adt, 0st<d(T)}

a':i:‘. =P{|B(d(t)) |A] + Ad(t), 0stsT}

s (2.3) =limnP{|Wn(t)/[YF(t)]|sA? + Agd(t), 0st<T}.

}3;{:’ A similar argument as in Corollary 2.2 shows that sup [d (t) - d(t)| - 0 a.s.,

E:.EE., so for arbitrary >0, (2.3) can be bounded from below and above by

':::g limnP{IWn(t)/[yF(t)]ISA? + A;[dn(t) te], 0stsT}. Since ¢ is arbitrary, it follows
;‘.:E' that 1-a=1imnp{|wn(t)/[y1=(t)]lsfl‘ + A5d_(t), OstsT}. Inverting the set inside the
:,:. braces for F(t) yields the band in (1.1) with rn(t;xi‘,xg) given in the theorem. A
iy similar argument with Corollary 2.2 instead of Corollary 2.1 yields the band in

s .2). |

i

’EE'.:; Confidence bands for F are also derivable from transformations to the Brownian
“:-‘;, bridge process Bo(t). In contrast to the PLE (cf. Hall and Wellner, 1980), the
:éf;:gi limiting process W(t) in Theorem 2.1 can be transformed in two ways to Bo(t).
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Theorem 2,3: If 0<T<= with F(T)>0, then

‘f (i) (8° (L(t)) }Osts'l'g' {W(t) [1-L(t)]/F(t) YocteT

(11)  (BOU-H(D)) by op @ NCOHE)/ YF () 1) oy

:gz where "g"means equal in distribution, and L(t)=y2[1-H(t)]/{H(t) + Yz[l-H(t)]}=
b Yam/u + viam).

'

l@ Cheng and Chang (1985) proved (i), and since the proof of (ii) is straight-
‘s{% forward, it is omitted here,

Corollary 2.3: If 0<T<» with F(T)>0, then

W (1) W () [1-L1/F) = 8(L(t)) on D(0,T],

L

B (ii) W (DH(t)/[yF(t)] = B°(1-H(t)) on D[0,T].

;5: Proof: The results follow from Theorem 2,1 and Theorem 2.3. ”
3

2

R Corollary 2.4: If 0<T<= with F(T)>0, then

. (1) W () [1-L(t)1/F (t) = B°(L(t)) on D[0,T],

tt‘

W (i1) W (OH()/[YF ()] =B’ (1-H(t)) on D[o,T].

1“

-ﬂ: The proof of this corollary is analogous to that of Corollary 2.2 except

that we use Corollary 2.3 instead of Corollary 2.1.

0o Crossing probabilities of the Brownian bridge process Bo(t) have been well-

studied in the literature (cf. Doob(1949), Anderson (1960), and Hall and Wellner

" (1980)). Here we only need to know that for 0<T<1,
‘oY
Af’i‘
*e 0
0 (2.4) Plsup,|B"(£)|a}=Qp, ;) O2).
g, We now present the Bn(t;xb) and Cn(t;xc) pairs of bands, respectively.
1P
i
e Theorem 2.4: Let O<a<l and 0<T<~ with F(T)>0. Then the bands in (1.1) and
M
M
(1.2) with
A by_-1/2,b

@ e A1 . yi ],

: (11) 1, (e Ay ()

:,‘A\..u.hu\,; 050
OG0 OO h
SN e RN O R 'l.‘ '|' “"‘ s ity fige? "4‘ $ iz* |‘-.'|° LR 'Q': An, l‘c M
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are pairs of asymptotic (1-a)100% simultaneous confidence bands for F on [0,T]
whenever 1-u=QYZd(T)(Ab,lb)=Qd(T)(lc,Ac).

Proof. Cheng and Chang (1985) proved the result for band (1.2) with rn(t;-)
given by (i). The proof for band (1.1) with rn(t;-) given by (i) is similar.
Below, we just present the proof for the bands with rn(t;-) given by (ii). By

the choice of Ac, we have
_ c ,Cy_ c,c
1-0=Qq 1y A" A=Qqy _pemy y/mem @ 42
=P{sup IBo(t)IsAc} (by 2.4)
0<t<s1-H(T) *
=P{supt|B0(1-H(t))|sAc}

=lim P{sup, W (£)H(t)/ [YF(£)] |2}

by Corollary 2.3(ii). Since Yn and Hn(t) are uniformly strongly consistent

estimators of y and H(t), the above expression is

. c
=lim P{sup |W_(t)H_(t)/[y F(t)]|<A"}.
Inverting the set inside the braces for F yields the band (1.1) with rn(t;-) given

by (ii). A similar argument using Corollary 2.4(ii) yields the other band. ||

In contrast with the case where B is known, it is difficult to construct
asymptotically exact (1-a)100% simultaneous confidence bands when 8 is unknown.
The explanation for this is deferred until after the statement of Theorem 2.5.
Cheng and Lin (1984) gave the following representation for Fn(t)=Hn(t)Y(n),

the MLE of F(t) when B is unknown:

(2.5) Zn(t)=n1/2[pn(t)-F(t)]=wn(t)+vn(t)+gn(t)
T"? where
1' |
i W_(8)=v6(0) a2 [H_(6)-H()], V, (D)=vF(0) tnF ()} 2 (y ),
Y
éb' with Supthn(t)|=0(£n£n(n)/n1/2) a.s. This representation, in conjunction with

the functional and univariate central limit theorems, implies the following

weak convergence result,

'p T " B "‘5"“.‘\“‘* DR TR TR
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o Theorem 2.5: If 0<T<» with F(T)>0, then Zn(t) => Z(t), where Z(t) is a Gaussian

. process having zero mean and covariance function Cov(Z(s),Z(t))=u(s)v(t) +
w(s)w(t) for 0<s<ts<T, where u(s) and v(t) are defined in Theorem 2.1, and

’
o w(s)=81/2F(s) tnF (s).

The form of the covariance function of the limiting process Z(t) precludes
‘;, the possibility of transforming Z into the Brownian motion process and/or the
:32 Brownian bridge process Bo(t). This prevents us from obtaining exact asymptotic
confidence bands for F through the use of the function QT(AI,AZ) in (2.2). An
:% ambitious program of deriving crossing probabilities of Z(t) might be possible,
) but the difficulty might far outweigh the benefits of such a program. We shall

therefore content ourselves with asymptotically conservative bands.

f; From (2.5) it is clear that the limiting process can be represented by
.
1N
{; Z(t)=W(t) + V(t) where W(t) is defined in Theorem 2.1 and V(t) is of the form
)
& (2.6) v(t)={8/2F(t)enF(t) N,
;{ where N is a standard normal random variable. Furthermore, since Z. and §, are
1 »
i\; independent under the KG model (cf. Armitage (1959), Allen (1963), and Sethuraman
)
U
(1965)), the limiting processes W(t) and V(t) are independent.
o Theorem 2.6: Let O<a<l and 0<T<» with F(T)>0. Then the bands (1.1) and (1.2)
kT
e with
) . ,a . dy_ -1/2,..d 2 d /2
{5 (1) r (t;27,z)=n I+ ypd (0] + 28] [£nFn(t)|}, and
<. ‘s ..e e e _ -1/2 e e e 1/2,
“? (i1) 1 (t;r{,25,2 )=n fy [A] + 254 ()] + 278 lﬂnFn(t)l}
- are pairs of conservative asymptotic (1-a)100% confidence bands for F on [0,T]
5 d .d d e .e e
~E whenever 1-a=QY2d(T)(A LA ) [26(z2 )-1]=Qd(T)(Al,A2)[20(z }-1], where Bn=(1-Yn)/Yn.
oY
gf The resulting pairs of bands are respectively referred to as the Dn(t;kd,zd)
R and En(t;ki,kg,ze) bands. Band Di(t;kd,zd) was introduced by Cheng and Chang (1985).

OO
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%~ Below we present only the proof of band E;(t;xg,kg,ze) since the proofs for the
A

55; other bands are similar.

ﬁﬁ Proof of Theorem 2.6: By choice of Af’ Ag and 2% and by Corollary 2.1,
; 1-m=p{lwct)/[yp(t)]|sx‘1e + Agd(t), 0st<T}+P{|N|<z®}

S

=

: <P{IW()/YF(D]] + [V()/[YF(0)] |sDA] + A5d(0)] +

B

{;i 221812 (g+1)£nF(t) |, Ost<T}

N

;? sp{|2(t)/[yl~*(t)]Is[x‘la + Agd(t)] + 22812 (B+1)nF (1) |, Ost<T}.

«.::.

Using the strongly consistent estimators Yoo dn(t), Bn and Fn(t) for v, d(t),

‘_z"

ot B and F(t), respectively, and by Theorem 2.5, the preceding probability is

'l':}

w 1 e e e . 1/2
P -llmnP{IZn(t)/[ynF(t)]|s[l1 + 2,4 ()] + 2 lsn (sn+1)£npn(t)|], 0<t<T}.

, Inverting the set inside the braces for F(t) yields the band E;(t;xi,xg,ze). I
.)"

o
.ﬁ: Notice that the first inequality in the proof is a very weak one. This
,)-.

i makes the Dn-bands and En-bands extremely conservative. We could have obtained
f. similar bands based on the Brownian bridge transformation in Corollary 2.3(ii)
et

:': and Corollary 2.4(ii), but since these bands are extremely conservative we do
[,

" not pursue them. Instead, the Fn(t;xf) and Gn(t;kg) pairs of bands will now be
.

Lﬂ developed.

o

o For A>0 define the distribution functions Q{!)(A) and R () us
-

" 2. (1) (452 -1 1/2 ;2 o Ao .

»:' (2.7) ;7 [e,(M17"(2/m) fo Qyzd(,r)(x X, A-X)

X exp{- (1/2) [x/c; (T)]?}dx
-
s and

. (2) ,,4_ -1 1/2 ¢ .
a5 (2.8) Q"  (M=[e, (M7 (2/m 7 [ Qq () (A=x, A=)
o exp{-(1/2) [x/c, (1)1 }dx,

L

R where
¢%:
,,A‘-

5*4
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812 L(T) |LaH(T) | if v2+v2LnH(T)+ (1-y2)H(T)20
c, (M=
V77 8172 Cleg) Lmticeg) | i€ vy 2Lnn(T)+ (1-vDH(T) <0

with t, being the solution of the transcendental equation Y2+Y2£nH(t)+(l-yz)H(t)=0,
L(t)=1-L(t), and
81/ 24(T) | tnH(T)| if H(T)zexp(-1)

€M= 1,2

B/ “exp(-1) if H(T)<exp(-1).

Theorem 2,7: Let 0O<a<l and 0<T<» with F(T)>0. Then the bands (1.1) and (1.2)

with

-1/ 2 1ey2d (1)1, and

@)z, (t:35n
i3 .28y2n-1/2,8
(i1)  r (£52%)=n""""A%y /H (t)

are pairs of conservative asymptotic (1-a)100% simultaneous confidence bands

for F on [0,T] whenever l-a= Q.g.l) (Af) = Q%Z) (Ag) .

Proof: We present only the proof for band (1.1) with rn(t;-) given in (i). The

proofs of the others are analogous. By Theorem 2.5, we have

lim P{sup |Z (£)L(t)/F(t) |sxf}=P{supt|Z(t)f(t)/F(t) |afy
=P{sup, [W(HT(£)/F(1) + V(O)T(t)/F(t) |sAT)

2p(sup, [W()T(1)/F()| + sup, [V(OIT(0)/F(t) |2T)
£
=£* P{suptlBo(L(t)) lSAf-x}dP{suptlV(t)i(t)/F(t) | sx}

by Theorem 2.3(i) and the Convolution Theorem. But by (2.6), {supt|V(t)i(t)/F(t)|sx}

1/2

={|N|5x/[supt|8 L(t)£nH(t) |1}, and since cl(T)=supt|Bl/zi(t)ZnH(t)l, then

f

- A

which by the choice of AT and the fact that L(T)/[1-L(T)]=y’d(T) equals Q{") (AF)=1-a.
Substituting the uniformly strongly consistent estimator ﬁn(t)=[1+yidn(t)]'1 for
L(t), and then inverting the set {sup |2 (t)L(t)/F(t)|sa"} for F(t) yields the

band FL(t;25). |
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K The pairs of bands in Theorem 2.7 are respectively referred to as the
Fn(t;xf) and Gn(t;kg) bands. To compute the constant cl(T) in the distribution
le)(x) in (2.7) a transcendental equation has to be solved. However, since the

bands are asymptotically conservative, we might lessen this conservatism by

e
?& using ci(T) instead of cl(T), where the former is defined as
h . 2.2 2
cr(m)= 81/212.‘(T)l&1H(T)| L€y oy LaH(D)+ (1-y JH(T)20
an P11l if yiaH(T)+ -yDH(T) <0,
%% Note here that since ci(T)Scl(T) the tabular value Af obtained using cI(T) will
ﬁ” be at most the tabular value obtained using cl(T).
*ﬁi To facilitate the use of the Fn(t;Af) and Gn(t;kg) bands, selected percentiles
%E for the distributions Qél)(x) and ng)(x) are given in Tables 1 and 2, respectively.
ﬂ' In computing the percentiles of Q%l)(x) in Table 1, ci(T) was used in place of
e cl(T). The IMSL routine DCADRE was employed to perform the numerical integration
dﬁ in (2.7) and (2.8). To use Tables 1 and 2, the user needs to know the values
] of B and F(T), or at least the values of B and Fn(T), the latter quantities
:ﬁ being the strongly consistent estimators of 8 and F(T), respectively. This
35 technique of substituting empirical versions in place of unknown quantities
23‘ is also required for determining the tabular values of the other bands. Clearly,
ES the finite sample properties of the bands will be affected by substituting these
'§‘ empirical versions, but the asymptotic properties will remain unchanged.
‘ﬁf By examining the upper and lower contours of the bands in each pair, one
g; notes that the lower and upper contours of band (1.1) are always above the
§§ corresponding contours of band (1.2), with the relationship for the upper
Tﬁ contours holding whenever l-rn(t;-)>0. We could therefore adapt the idea of
gﬁ Cs6rgo and Horvath (1986) of mixing the bands in each pair to obtain a
'?.: narrower band. For example, we could define
2 Ax(£522,33) =A% (123,03 n A2 (2523 0D
Y
‘0:
g
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Selected Percentile Points for the Distribution

Q%z)(x) for Some Values of B and F(T)

Table 2.
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Selected Percentile Points for the Distribution

Q%l)(k) for Some Values of 8 and F(T)
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va as the An-mixed band. One must however be cautious in using such mixed bands
131 since as pointed out in Csdrgd and Horvdth (1986), the finite sample coverage
probability might be nowhere from the nominal asymptotic coverage probability
5 of 1-a if the bands being mixed are appreciably different. This idea of mixing
bands to obtain narrower ones is however very appealing for the case where 8

is unknown, since the bands being mixed are asymptotically conservative and

;ig the mixed bands might still turn out to have finite sample coverage probabili-
Y.

3\ ties of at least l-a.

2

Our comparisons in Sections 3 and 4 include the PLE-based GF-type bands

ﬁ? (cf. Gillespie and Fisher, 1979 and Csorgd and Horvath, 1986). This pair,
o
:g? labelled the Hn(t;A?,Ag) bands, are given by

1, ..h h _ .,h hy,-1
5 (2.9) Hy(t5hg,29)={IS ({1 + 7 (53,00},
R h ,h (-1
; S,(0){1 - x_(t;3),2; 1}77], 0st<T}
W and
MO h
i:f (2.10) Hﬁ(t;xl,xg)={[sn(t){1 - rn(t;A?,Ag)},
o s_(){1 + r_(t;A",AM1], ost<T)
o n Taltsrgstal s ’
= where rn(t;A?,xg)=n'1/2[A? + Agd;(t)],
W
I h .h
¥ -1_
v Qacry) Prs2p) =1-2,
. Lg
e 4 t -1

*()=- [y IS, (WH (w]77ds_(w),

l"“
;E} and S_(t) is the PLE of F. The PLE is defined as
4§ ey
ﬂ"‘o .
v,s.i. _ 51
o Sa(0)=Mg5.2 cey [(M-Ry)/ (n-Ry+ D] T (bemax, ¢ 24D,
s where Ri is the rank of Zi in the lexicographic ordering of (Zi,Gi), i=1,...,n,
")
‘32 and with the convention that the product over an empty set equals 1.
)
)

e
-
™

3. Adequacy of the asymptotic results for finite samples. To assess the adequacy

. of the asymptotic results for finite sample sizes, a computer simulation was
" s 2 2
P performed to obtain estimates of the error probabilities of the bands A, ..., H..
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;?; For each combination of n, 8 and a, 500 randomly censored samples were generated
o via the KG model with F exponential with scale parameter 1 and G exponential

with scale parameter 8. For each of these 500 samples, the asymptotic (1-a)100%

é\i simul taneous confidence bands Aﬁ, cees Hi for F on the interval [0,1] were

i&j constructed. The proportion among the 500 bands that did not contain F(t) on
o the interval [0,1] was then determined for each of the bands Aﬁ, cees Hi. The
g\ values of n were set to 50, 100 and 200, while the asymptotic error levels a

?ﬁ were set to 0.01, 0.05 and 0.10. The censoring parameter 8 took the values 0.5,

1.0 and 2.0, which amounted to 33%, 50% and 67% censoring, respectively. This

» simulation was performed on a Cyber 730 computer at the Florida State University
K/

o

g; Computer Center. The uniform random number generator used was the intrinsic

oy

Toutine RANF, and a result by Lurie and Hartley (1972) concerning the sequential
) generation of ordered samples without recourse to sorting was employed.
’ﬁ: Table 3 is a summary of the asymptotic tabular values [that is, in computing

the tabular values we used the known values of 8, F(t) and G(t)] utilized in

) constructing the bands for the different values of 8 and a. We imposed the
ﬁg’ restriction Al 12 and Ah-xg, while the tabular values AT and A; were chosen so

the asymptotic widths of An(t;xi,xg) at t=0 and t=1/2 were approximately equal.
Tables 4a-c are summaries of the observed error probabilities. Based on
f these results, the following rough conclusions can be made:
(i) When the censoring proportion is small (B=0.50), the asymptotic error
§ level serves as an acceptable approximation to the true error level of the bands
p for moderate sample sizes. This conclusion is supported by the fact that the

- observed error levels of the asymptotically exact MLE-based bands Aﬁ, Bi and Ci,

o and the PLE-based band Hﬁ are close to a. However, as B increases from 0.5 to
£ 1.0 and 2.0, the observed error levels for n=50 are far from a although they

do get closer to a when n is increased. Thus, generally, the more censoring
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L
e there is, the larger the sample needed for the asymptotic levels to serve as

good approximations to the finite sample error levels of the bands.

(ii) The bands Dﬁ(t;xd,zd) and Dﬁ(t;ke,le,ze) are extremely conservative,
éég while Fi(t;kf) and Gi(t;lg) are less conservative than Di and Ei, with Fi tending
f&& to be less conservative than Gi.
st 4, Comparison of widths of the bands., In this section we present analytic
%:5 comparisons of the asymptotic widths of the bands, and determine regions where
f%: each tends to perform well, Let mn(t;-) denote the width of the bands (1.2) and
i (2.10), and define the asymptotic width to be limn_mnl/ zmn(t;'). To distinguish
§§§ which pair of bands is referred to, let
éii (4.1) xe(t;-)=limnn1/2mn(t;-)=2F(t)1imnn1/2rn(t;-) a.s.,
*FE where 6 is the letter label of the pair of band, e.g., xA(t;A:,A;) is the asymp-
§§; totic width of pair An‘ In (4.1) we used the strong consistency of Fn(t) and
:‘3?'. S,(t) for F(t), and the fact that the asymptotic widths of the bands in (1.1)
?ﬁi and (1.2), and in (2.9) and (2.10) are equal. Table 5 is a summary of the
é;a asymptotic widths of the different pairs of bands, and the conditions that their
n corresponding tabular values must satisfy. The asymptotic width of the PLE-based
éﬁé Hn-band is obtained by noting that
Bl
,§:§ d;l(t)=-f;[sn(u)ﬂn(u)]'ldSn(u)-> vd(t) a.s.

" when the KG model obtains,
;f* To simplify our comparison below we assume that A?:A%:Aa, A§=A§=Ae and
%k A2=xg=kh. Under the first assumption, band Cn is identical to band A,. We

"' now compare the asymptotic widths of the bands for the case where B is known.
§§§£ Since d(T)2yd(T)272d(T) it follows from (2.2) that Aathakb. This
Fﬂs: immediately implies that xB(t;Ab)st(t;Ah,Ah) for 0stsT, and the difference

in asymototic width isZF(t){(Ah-Ab) + yd(t)(xh-ylb)} which gets large for large t.
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1; The effect on this difference due to a change in B is not very clear since
xb and Ah both depend on 8. Nevertheless, by acting as if ﬂbixh, which is

indicated by Table 3, the maximum difference occurs at approximately B8=1 and

iy decreases as B becomes different from 1 in either direction. On the other

g

'y R |

Gy . . . .

o hand, the difference in asymptotic widths of bands H, and A} is

ZF(t){(Ah-Aay) + yd(t)(xh-xa)}, and since Table 3 also indicates that Ah!A?=xc,

P )

- e D

this difference is positive and increases with either an increase in B or a

Ca ww
SR N
-

decrease in t. Thus, both MLE-based bands outperform the Gillespie-Fisher PLE-

based band in terms of their asymptotic widths.

Sa It is a simple algebraic exercise to show that

i Xy (8512, 200 55 (£52°) = et Ly (2 P a-vD 1.

since 2222 it follows that H™l1{y(0®-ya®)/ P -yH) st v/ (L)} = F LU Iv/ (1en) 12,
§? Furthermore, since {y/(1+y)fvdecreases rapidly from 1.0 to 0.5 as 8 increases from
%3 0 to 1, we deduce that the interval {t: xA(t;Aa,Aa)st(t;Ab) gets shorter as B8

”1 increases, but does so at a slow rate. Adapting again the idea of a mixed band,
?% we can define the band

S:E AB)_(£53%,2%,2P) = &_(£;3%,0%) n B_(£527),

= which would still be an asymptotically (1-a)100% simultaneous confidence band for
i%’ F, but whose finite sample coverage probability might be much less than l-a.

%§: Similar results carry over to the case where 8 is unknown. Setting zd=ze,

*$ we have

g xp(t:2%, 22k (£30°,1%,2%) = i iy %%/ pda-vHn,

2%; and

B xp(t:3 520 (6528) = e liyEafy) nfa-vH .

g? Thus the E — and G —bands are narrower for small t, while the D — and F —bands

s are narrower for large t. From the derivation of the bands in Section 2 and
the simulation results of Section 3 we have seen that the Dn-and En-bands are

N extremely conservative. Intuitively, we therefore expect them to be wider than

17
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e Table 5. Asymptotic Widths of the Pairs of Bands An to Hn with

Tk Corresponding Requirements for Their Tabular Values

-1 R i
st of (201 M50 sitzeerss o

b A y[x‘l‘+x§d(t)] % (1) (A?,A;)ﬂ-a

u B J\b[lwzd(t)] Q2413 P ,aP)z1-a

W) ¢ [ASy/m(e) Q) (%1% =1-a

I D |a%[1sv2d(e)]+2%% | an F(D)| Q24 (r) o9 b2 (D -1121-a
o E y[xfugd(t)]«»zes'/ﬂm F(t)||Qq (xf,x§)[z¢(ze)-1]=1-a
il N PO A TOS) ot 010

a5 G [ABy/H(t) Q,fz) (28)=1-a

o Ho [Dalyam) Qg (ry O Ap=1-c
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the less conservative bands F and Gn’ We show this below. From Table 5 it
is easy to verify that XE(t;Xe,ke,ze)ZXG(t;lg) if and only if t satisfies the

transcendental equation

H(t) 1/2

(4.2)  H) “Ycexpl-(28-1%)/ (2% %)}

The function in the left side of (4.2), which is graphed in Figure 1, has a
minimum value of 0.6922 at H(t)=exp(-1), and drops rapidly from 1.0 and slowly
climbs back to 1.0 as H(t) varies from 0 to 1. This is the reason why the
interval {t:xE(t;Ae,Ae,ze)sz(t;Ag)} is wide. For example, using the tabular

values in Table 3 and referring to Figure 1, the Gn-band is narrower than the ‘
En—band in the approximate intervals (0.07,2.46), (0.08,1.55) and (0.07,0.93) 1
: for B8=0.5, 1.0 and 2.0, respectively. Similarly, xD(t;Ad,zd)ZxF(t;xf) whenever

t satisfies

H(t) 1/2

H) TV cexpt-(af-2d) /12981 2 (841) 10

Referring again to Figure 1 and using the tabular values in Table 3, we find

(0.05,2.71), (0.03,2.13) and (0.02,1.64) to be the approximate intervals where
band Fy is narrower than band D, for 8=0.5, 1.0 and 2,0, respectively. For all
practical purposes, we can therefore consider the F,- and Gn-bands to be
narrower than the D,— and En-bands in the regions where they perform well. As
in the case where 8 is known, we could also define the mixed band

(F6)_(£:25,28) = F_(:2%) ng_(£:28)
which will be narrower on almost the whole region of interest as compared to the
other bands presented. The simulation results in Section 3 indicate that band
(FG)n may still be conservative.

The PLE-based GF-type Hn-band is wider than the Fn- and Gn-bands whenever
: 201 (n) and t<i"1(g), respectively, where n={y(A\fy-A")1/{(1-y) \P-xEC1+y) 11
' and £={Y(Xg-1h)}/{lh(1-y)}. To get some idea on these changeover points, notice

that except for the case 8=0.5 and a=0.10 in Table 3, H'l(n)sH'l(E). Thus, in
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FIGURE 1. Graph of H(t) versus H(t)H(t)
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~ Figure 2a. Plots of 90% Confidence Bands for Randomly
i
‘ Generated Data Under the KG Model with 8=0.,5
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Figure 2c. Plots of 90% Confidence Bands for Randomly

Generated Data Under the KG Model with g=1.5
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Figure 2d. Plots of 90% Confidence Bands for Randomly

Generated Data Under the KG Model with 8=2.0
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most situations we expect band (FG)n to be narrower than band Hn on almost the

whole region of interest.

In Figures 2a-d we present superimposed plots of the MLE-based bands Dﬁ,

&Ef Ei, Fi and Gi, and the Gillespie-Fisher PLE-based band Hi. These bands are asymp-
;%% totic 90% simultaneous confidence bands for F based on four randomly generated
R sets of censored data each of size 100, The MLE and the PLE of F are also
e
é&é plotted. In plotting the bands and estimators via the Versatec plotter, we
:Eﬁ have taken the liberty of connecting adjacent points by straight lines. The
h four data sets were generated via the KG model considered in the simulation,
%Sé with the censoring parameter B taking values 0,50, 1.00, 1.50 and 2.00. In
%é constructing the bands, T was set equal to 1.0. Notice that when B is small
- the differences among the bands are not very apparent, but as B increases the
rif differences among the bands are clear-cut. These plots are consistent with
VES our analytical results showing the an and Dn-bands are narrower for large t,
w and the Gn— and En-bands are narrower for small t. The small interval emanating
';E from 0 where band E, is narrower than band Gn is also visible in Figures 2a-d.
: 3 Finally, under the KG model it is seen that the PLE-based band holds its own
5% with the MLE-based bands when the censoring proportion is small (B8=0.50), but as 8
E~£ increases it is easily outperformed by the MLE-based bands.
D, 3
[t
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